TSTP Solution File: SWW674^1 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : SWW674^1 : TPTP v8.1.2. Released v6.4.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri Sep  1 00:21:54 EDT 2023

% Result   : Satisfiable 30.72s 31.01s
% Output   : Assurance 0s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.13  % Problem    : SWW674^1 : TPTP v8.1.2. Released v6.4.0.
% 0.11/0.14  % Command    : do_cvc5 %s %d
% 0.13/0.35  % Computer : n011.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit   : 300
% 0.13/0.35  % WCLimit    : 300
% 0.13/0.35  % DateTime   : Sun Aug 27 22:01:55 EDT 2023
% 0.13/0.35  % CPUTime    : 
% 0.20/0.48  %----Proving TH0
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  % File     : SWW674^1 : TPTP v8.1.2. Released v6.4.0.
% 0.20/0.49  % Domain   : Software Verification
% 0.20/0.49  % Problem  : ICL logic based upon modal logic based upon simple type theory
% 0.20/0.49  % Version  : [Ben08] axioms.
% 0.20/0.49  % English  :
% 0.20/0.49  
% 0.20/0.49  % Refs     : [GA08]  Garg & Abadi (2008), A Modal Deconstruction of Access
% 0.20/0.49  %          : [Ben08] Benzmueller (2008), Automating Access Control Logics i
% 0.20/0.49  %          : [BP09]  Benzmueller & Paulson (2009), Exploring Properties of
% 0.20/0.49  % Source   : [TPTP]
% 0.20/0.49  % Names    :
% 0.20/0.49  
% 0.20/0.49  % Status   : Satisfiable
% 0.20/0.49  % Rating   : 0.67 v6.4.0
% 0.20/0.49  % Syntax   : Number of formulae    :   58 (  25 unt;  31 typ;  25 def)
% 0.20/0.49  %            Number of atoms       :   85 (  25 equ;   0 cnn)
% 0.20/0.49  %            Maximal formula atoms :    8 (   3 avg)
% 0.20/0.49  %            Number of connectives :   68 (   3   ~;   1   |;   2   &;  61   @)
% 0.20/0.49  %                                         (   0 <=>;   1  =>;   0  <=;   0 <~>)
% 0.20/0.49  %            Maximal formula depth :    7 (   1 avg)
% 0.20/0.49  %            Number of types       :    3 (   1 usr)
% 0.20/0.49  %            Number of type conns  :  131 ( 131   >;   0   *;   0   +;   0  <<)
% 0.20/0.49  %            Number of symbols     :   33 (  30 usr;   3 con; 0-3 aty)
% 0.20/0.49  %            Number of variables   :   51 (  41   ^;   6   !;   4   ?;  51   :)
% 0.20/0.49  % SPC      : TH0_SAT_EQU_NAR
% 0.20/0.49  
% 0.20/0.49  % Comments : 
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----Multi-Modal Logic
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----Our possible worlds are are encoded as terms the type  $i;
% 0.20/0.49  %----Here is a constant for the current world:
% 0.20/0.49  thf(current_world,type,
% 0.20/0.49      current_world: $i ).
% 0.20/0.49  
% 0.20/0.49  %----Modal logic propositions are then becoming predicates of type ( $i> $o);
% 0.20/0.49  %----We introduce some atomic multi-modal logic propositions as constants of
% 0.20/0.49  %----type ( $i> $o):
% 0.20/0.49  thf(prop_a,type,
% 0.20/0.49      prop_a: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(prop_b,type,
% 0.20/0.49      prop_b: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(prop_c,type,
% 0.20/0.49      prop_c: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  %----The idea is that an atomic multi-modal logic proposition P (of type
% 0.20/0.49  %---- $i >  $o) holds at a world W (of type  $i) iff W is in P resp. (P @ W)
% 0.20/0.49  %----Now we define the multi-modal logic connectives by reducing them to set
% 0.20/0.49  %----operations
% 0.20/0.49  %----mfalse corresponds to emptyset (of type $i)
% 0.20/0.49  thf(mfalse_decl,type,
% 0.20/0.49      mfalse: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mfalse,definition,
% 0.20/0.49      ( mfalse
% 0.20/0.49      = ( ^ [X: $i] : $false ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mtrue corresponds to the universal set (of type $i)
% 0.20/0.49  thf(mtrue_decl,type,
% 0.20/0.49      mtrue: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mtrue,definition,
% 0.20/0.49      ( mtrue
% 0.20/0.49      = ( ^ [X: $i] : $true ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mnot corresponds to set complement
% 0.20/0.49  thf(mnot_decl,type,
% 0.20/0.49      mnot: ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mnot,definition,
% 0.20/0.49      ( mnot
% 0.20/0.49      = ( ^ [X: $i > $o,U: $i] :
% 0.20/0.49            ~ ( X @ U ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mor corresponds to set union
% 0.20/0.49  thf(mor_decl,type,
% 0.20/0.49      mor: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mor,definition,
% 0.20/0.49      ( mor
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.20/0.49            ( ( X @ U )
% 0.20/0.49            | ( Y @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mand corresponds to set intersection
% 0.20/0.49  thf(mand_decl,type,
% 0.20/0.49      mand: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mand,definition,
% 0.20/0.49      ( mand
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.20/0.49            ( ( X @ U )
% 0.20/0.49            & ( Y @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mimpl defined via mnot and mor
% 0.20/0.49  thf(mimpl_decl,type,
% 0.20/0.49      mimpl: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mimpl,definition,
% 0.20/0.49      ( mimpl
% 0.20/0.49      = ( ^ [U: $i > $o,V: $i > $o] : ( mor @ ( mnot @ U ) @ V ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----miff defined via mand and mimpl
% 0.20/0.49  thf(miff_decl,type,
% 0.20/0.49      miff: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(miff,definition,
% 0.20/0.49      ( miff
% 0.20/0.49      = ( ^ [U: $i > $o,V: $i > $o] : ( mand @ ( mimpl @ U @ V ) @ ( mimpl @ V @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mbox
% 0.20/0.49  thf(mbox_decl,type,
% 0.20/0.49      mbox: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mbox,definition,
% 0.20/0.49      ( mbox
% 0.20/0.49      = ( ^ [R: $i > $i > $o,P: $i > $o,X: $i] :
% 0.20/0.49          ! [Y: $i] :
% 0.20/0.49            ( ( R @ X @ Y )
% 0.20/0.49           => ( P @ Y ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mdia
% 0.20/0.49  thf(mdia_decl,type,
% 0.20/0.49      mdia: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mdia,definition,
% 0.20/0.49      ( mdia
% 0.20/0.49      = ( ^ [R: $i > $i > $o,P: $i > $o,X: $i] :
% 0.20/0.49          ? [Y: $i] :
% 0.20/0.49            ( ( R @ X @ Y )
% 0.20/0.49            & ( P @ Y ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----For mall and mexists, i.e., first order modal logic, we declare a new
% 0.20/0.49  %----base type individuals
% 0.20/0.49  thf(individuals_decl,type,
% 0.20/0.49      individuals: $tType ).
% 0.20/0.49  
% 0.20/0.49  %----mall
% 0.20/0.49  thf(mall_decl,type,
% 0.20/0.49      mall: ( individuals > $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mall,definition,
% 0.20/0.49      ( mall
% 0.20/0.49      = ( ^ [P: individuals > $i > $o,W: $i] :
% 0.20/0.49          ! [X: individuals] : ( P @ X @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mexists
% 0.20/0.49  thf(mexists_decl,type,
% 0.20/0.49      mexists: ( individuals > $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mexists,definition,
% 0.20/0.49      ( mexists
% 0.20/0.49      = ( ^ [P: individuals > $i > $o,W: $i] :
% 0.20/0.49          ? [X: individuals] : ( P @ X @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Validity of a multi modal logic formula can now be encoded as
% 0.20/0.49  thf(mvalid_decl,type,
% 0.20/0.49      mvalid: ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mvalid,definition,
% 0.20/0.49      ( mvalid
% 0.20/0.49      = ( ^ [P: $i > $o] :
% 0.20/0.49          ! [W: $i] : ( P @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Satisfiability of a multi modal logic formula can now be encoded as
% 0.20/0.49  thf(msatisfiable_decl,type,
% 0.20/0.49      msatisfiable: ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(msatisfiable,definition,
% 0.20/0.49      ( msatisfiable
% 0.20/0.49      = ( ^ [P: $i > $o] :
% 0.20/0.49          ? [W: $i] : ( P @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Countersatisfiability of a multi modal logic formula can now be encoded as
% 0.20/0.49  thf(mcountersatisfiable_decl,type,
% 0.20/0.49      mcountersatisfiable: ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mcountersatisfiable,definition,
% 0.20/0.49      ( mcountersatisfiable
% 0.20/0.49      = ( ^ [P: $i > $o] :
% 0.20/0.49          ? [W: $i] :
% 0.20/0.49            ~ ( P @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Invalidity of a multi modal logic formula can now be encoded as
% 0.20/0.49  thf(minvalid_decl,type,
% 0.20/0.49      minvalid: ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(minvalid,definition,
% 0.20/0.49      ( minvalid
% 0.20/0.49      = ( ^ [P: $i > $o] :
% 0.20/0.49          ! [W: $i] :
% 0.20/0.49            ~ ( P @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----ICL logic based upon modal logic based upon simple type theory
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----The encoding of ICL logic employs only one accessibility relation which
% 0.20/0.49  %----introduce here as a constant 'rel'; we don't need multimodal logic.
% 0.20/0.49  thf(rel_type,type,
% 0.20/0.49      rel: $i > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  %----ICL logic distiguishes between atoms and principals; for this we introduce
% 0.20/0.49  %----a predicate 'icl_atom' ...
% 0.20/0.49  thf(icl_atom_type,type,
% 0.20/0.49      icl_atom: ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_atom,definition,
% 0.20/0.49      ( icl_atom
% 0.20/0.49      = ( ^ [P: $i > $o] : ( mbox @ rel @ P ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %---- ... and also a predicate 'icl_princ'
% 0.20/0.49  thf(icl_princ_type,type,
% 0.20/0.49      icl_princ: ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_princ,definition,
% 0.20/0.49      ( icl_princ
% 0.20/0.49      = ( ^ [P: $i > $o] : P ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----ICL and connective
% 0.20/0.49  thf(icl_and_type,type,
% 0.20/0.49      icl_and: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_and,definition,
% 0.20/0.49      ( icl_and
% 0.20/0.49      = ( ^ [A: $i > $o,B: $i > $o] : ( mand @ A @ B ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----ICL or connective
% 0.20/0.49  thf(icl_or_type,type,
% 0.20/0.49      icl_or: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_or,definition,
% 0.20/0.49      ( icl_or
% 0.20/0.49      = ( ^ [A: $i > $o,B: $i > $o] : ( mor @ A @ B ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----ICL implication connective
% 0.20/0.49  thf(icl_impl_type,type,
% 0.20/0.49      icl_impl: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_impl,definition,
% 0.20/0.49      ( icl_impl
% 0.20/0.49      = ( ^ [A: $i > $o,B: $i > $o] : ( mbox @ rel @ ( mimpl @ A @ B ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----ICL true connective
% 0.20/0.49  thf(icl_true_type,type,
% 0.20/0.49      icl_true: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_true,definition,
% 0.20/0.49      icl_true = mtrue ).
% 0.20/0.49  
% 0.20/0.49  %----ICL false connective
% 0.20/0.49  thf(icl_false_type,type,
% 0.20/0.49      icl_false: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_false,definition,
% 0.20/0.49      icl_false = mfalse ).
% 0.20/0.49  
% 0.20/0.49  %----ICL says connective
% 0.20/0.49  thf(icl_says_type,type,
% 0.20/0.49      icl_says: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_says,definition,
% 0.20/0.49      ( icl_says
% 0.20/0.49      = ( ^ [A: $i > $o,S: $i > $o] : ( mbox @ rel @ ( mor @ A @ S ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----An ICL formula is K-valid if its translation into modal logic is valid
% 0.20/0.49  thf(iclval_decl_type,type,
% 0.20/0.49      iclval: ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_s4_valid,definition,
% 0.20/0.49      ( iclval
% 0.20/0.49      = ( ^ [X: $i > $o] : ( mvalid @ X ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----ICL notions of validity wrt S4
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----We add the reflexivity and the transitivity axiom to obtain S4.
% 0.20/0.49  thf(refl_axiom,axiom,
% 0.20/0.49      ! [A: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ rel @ A ) @ A ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(trans_axiom,axiom,
% 0.20/0.49      ! [B: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ rel @ B ) @ ( mbox @ rel @ ( mbox @ rel @ B ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----ICL^=> logic based upon modal logic
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----The new connective 'speaks for'
% 0.20/0.49  thf(icl_impl_princ_type,type,
% 0.20/0.49      icl_impl_princ: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_impl_princ,definition,
% 0.20/0.49      ( icl_impl_princ
% 0.20/0.49      = ( ^ [A: $i > $o,B: $i > $o] : ( mbox @ rel @ ( mimpl @ A @ B ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  ------- convert to smt2 : /export/starexec/sandbox/tmp/tmp.feRpejNgcP/cvc5---1.0.5_30018.p...
% 0.20/0.50  (declare-sort $$unsorted 0)
% 0.20/0.50  (declare-fun tptp.current_world () $$unsorted)
% 0.20/0.50  (declare-fun tptp.prop_a ($$unsorted) Bool)
% 0.20/0.50  (declare-fun tptp.prop_b ($$unsorted) Bool)
% 0.20/0.50  (declare-fun tptp.prop_c ($$unsorted) Bool)
% 0.20/0.50  (declare-fun tptp.mfalse ($$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mfalse (lambda ((X $$unsorted)) false)))
% 0.20/0.50  (declare-fun tptp.mtrue ($$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mtrue (lambda ((X $$unsorted)) true)))
% 0.20/0.50  (declare-fun tptp.mnot ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mnot (lambda ((X (-> $$unsorted Bool)) (U $$unsorted)) (not (@ X U)))))
% 0.20/0.50  (declare-fun tptp.mor ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mor (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (@ X U) (@ Y U)))))
% 0.20/0.50  (declare-fun tptp.mand ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mand (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (@ Y U)))))
% 0.20/0.50  (declare-fun tptp.mimpl ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mimpl (lambda ((U (-> $$unsorted Bool)) (V (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot U)) V) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.miff ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.miff (lambda ((U (-> $$unsorted Bool)) (V (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand (@ (@ tptp.mimpl U) V)) (@ (@ tptp.mimpl V) U)) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.mbox ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mbox (lambda ((R (-> $$unsorted $$unsorted Bool)) (P (-> $$unsorted Bool)) (X $$unsorted)) (forall ((Y $$unsorted)) (=> (@ (@ R X) Y) (@ P Y))))))
% 0.20/0.50  (declare-fun tptp.mdia ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mdia (lambda ((R (-> $$unsorted $$unsorted Bool)) (P (-> $$unsorted Bool)) (X $$unsorted)) (exists ((Y $$unsorted)) (and (@ (@ R X) Y) (@ P Y))))))
% 0.20/0.50  (declare-sort tptp.individuals 0)
% 0.20/0.50  (declare-fun tptp.mall ((-> tptp.individuals $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mall (lambda ((P (-> tptp.individuals $$unsorted Bool)) (W $$unsorted)) (forall ((X tptp.individuals)) (@ (@ P X) W)))))
% 0.20/0.50  (declare-fun tptp.mexists ((-> tptp.individuals $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mexists (lambda ((P (-> tptp.individuals $$unsorted Bool)) (W $$unsorted)) (exists ((X tptp.individuals)) (@ (@ P X) W)))))
% 0.20/0.50  (declare-fun tptp.mvalid ((-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mvalid (lambda ((P (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ P W)))))
% 0.20/0.50  (declare-fun tptp.msatisfiable ((-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.msatisfiable (lambda ((P (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ P W)))))
% 0.20/0.50  (declare-fun tptp.mcountersatisfiable ((-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mcountersatisfiable (lambda ((P (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ P W))))))
% 0.20/0.50  (declare-fun tptp.minvalid ((-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.minvalid (lambda ((P (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ P W))))))
% 0.20/0.50  (declare-fun tptp.rel ($$unsorted $$unsorted) Bool)
% 0.20/0.50  (declare-fun tptp.icl_atom ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.icl_atom (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) P) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.icl_princ ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.icl_princ (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ P __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.icl_and ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.icl_and (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand A) B) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.icl_or ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.icl_or (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor A) B) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.icl_impl ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.icl_impl (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) (@ (@ tptp.mimpl A) B)) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.icl_true ($$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.icl_true tptp.mtrue))
% 0.20/0.50  (declare-fun tptp.icl_false ($$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.icl_false tptp.mfalse))
% 0.20/0.50  (declare-fun tptp.icl_says ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.icl_says (lambda ((A (-> $$unsorted Bool)) (S (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) (@ (@ tptp.mor A) S)) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.iclval ((-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.iclval (lambda ((X (-> $$unsorted Bool))) (@ tptp.mvalid X))))
% 0.20/0.50  (assert (forall ((A (-> $$unsorted Bool))) (@ tptp.mvalid (@ (@ tptp.mimpl (@ (@ tptp.mbox tptp.rel) A)) A))))
% 0.20/0.50  (assert (forall ((B (-> $$unsorted Bool))) (let ((_let_1 (@ tptp.mbox tptp.rel))) (let ((_let_2 (@ _let_1 B))) (@ tptp.mvalid (@ (@ tptp.mimpl _let_2) (@ _let_1 _let_2)))))))
% 0.20/0.50  (declare-fun tptp.icl_impl_princ ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.icl_impl_princ (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) (@ (@ tptp.mimpl A) B)) __flatten_var_0))))
% 0.20/0.50  (set-info :filename cvc5---1.0.5_30018)
% 0.20/0.50  (check-sat)
% 0.20/0.50  ------- get file name : TPTP file name is SWW674^1
% 0.20/0.50  ------- cvc5-thf : /export/starexec/sandbox/solver/bin/cvc5---1.0.5_30018.smt2...
% 0.20/0.50  --- Run --ho-elim --full-saturate-quant at 10...
% 10.43/10.65  --- Run --ho-elim --no-e-matching --full-saturate-quant at 10...
% 20.55/20.73  --- Run --ho-elim --no-e-matching --enum-inst-sum --full-saturate-quant at 10...
% 30.65/30.88  --- Run --ho-elim --finite-model-find --uf-ss=no-minimal at 5...
% 30.72/31.01  % SZS status Satisfiable for SWW674^1
% 30.72/31.01  % cvc5---1.0.5 exiting
% 30.72/31.02  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------